久久精品国产91久久麻豆,一区二区不卡视频在线观看,97国产精品人人爽人人做,99国产欧美久久久蜜芽高清成人

歡迎光臨無錫市鈺婷物資有限公司官方網(wǎng)站!

聯(lián)系我們
服務(wù)熱線
0510-85188012
郵箱:491866689@qq.com
地址:無錫市濱湖區(qū)振興路8號(hào)
當(dāng)前位置:首頁>>新聞中心
空調(diào)用空氣換熱器翅片形式的選擇
點(diǎn)擊次數(shù):69 更新時(shí)間:2023-11-05

  1.前言

  在空調(diào)工程中,空氣的加熱和冷卻處理過程中大量用到的翅片管換熱器采用盤管形式,

  傳熱管束是用直徑較小的紫銅管穿上鋁翅片,排成2至8排制成管束。冷熱水在管內(nèi)為蛇形往復(fù)流動(dòng),空氣在管外翅片間穿行,同時(shí)被加熱或冷卻。翅片采用整體式翅片形式,翅片片型有平板型、皺紋型(其中,波紋板應(yīng)用*多)及開縫型(如條縫型、百葉窗型等),見圖1。從1990s開始,百葉窗型的翅片在歐洲得到了大力發(fā)展。

 ?。╝)     (b)     (c)       (d)     (e)     (f)

  圖1幾種翅片形式

 ?。╝)平板矩形百葉窗;(b)波紋板弧形百葉窗;(c)小翼帶矩形百葉窗型;(d)橫向皺紋板 ;(e)點(diǎn)狀皺紋板;(f)三角形波紋板

  不同翅片形式的換熱器,其空氣側(cè)換熱系數(shù)及阻力特性均有所差異。大量的實(shí)驗(yàn)發(fā)現(xiàn):在獲得好的熱交換特性的同時(shí),不可避免地造成了摩阻的增加。在給定的熱交換器尺寸和風(fēng)機(jī)運(yùn)行曲線下,壓力損失的提高必然造成空氣流速的降低,并進(jìn)而使空氣與翅片壁面之間的傳熱溫差降低。其次,空調(diào)工程中所使用的大部分換熱器都是干、濕工況交替運(yùn)行的,而不同翅片換熱器在濕工況下的換熱及阻力特性與干工況下相比,有很大差異。因此,如何正確選用翅片形式,對(duì)熱交換器實(shí)際工作特性的影響不容忽視,*好的是在換熱與阻力損失之間找到一種折衷的方案。

  2.干工況下各種翅片換熱器的性能對(duì)比

  2.1 換熱系數(shù)和壓降損失

  Giovanni Lozza和Umberto Merlo[1]對(duì)翅距2mm,翅厚0.11mm,管間距25mm,排間距21.65mm的各種翅片(見表1)進(jìn)行了對(duì)比試驗(yàn),試驗(yàn)時(shí)的迎面風(fēng)速為1m/s到3m/s。表征空氣側(cè)換熱強(qiáng)弱的Colburn j 因子和摩阻因子 f 與Re數(shù)的關(guān)系見圖2和圖3。

  表1 各種翅片形式

  翅片代號(hào)

  翅片形式

  開縫或皺紋寬度(mm)

  P

  N

  C

  L1

  L2

  W

  X1

  X2

  X3

  平板型

  波紋板型

  橫向皺紋板型

  平板矩形百葉窗

  平板矩形百葉窗

  平板小翼型帶矩形百葉窗

  波紋板弧形百葉窗

  波紋板弧形百葉窗

  波紋板弧形百葉窗

  0.80

  0.54

  0.75

  1.60+0.70

  1.00

  0.75

  0.65

  圖2 j與雷諾數(shù)的關(guān)系               圖3 f與雷諾數(shù)的關(guān)系

  由圖2可看到,增強(qiáng)型翅片可極大地強(qiáng)化翅片換熱器的換熱性能。單從換熱性能來說,

  弧形百葉窗翅片的*優(yōu),其次為矩形百葉窗型、皺紋板型、波紋板型。究其原因?yàn)?,光直翅片中,連續(xù)穩(wěn)定的粘性層流層妨礙了流體與翅片的換熱;波紋翅片破壞了連續(xù)穩(wěn)定的粘性層流層,所以換熱系數(shù)增大了;而開縫式翅片,不僅破壞了連續(xù)穩(wěn)定的粘性層流層,而且大大增加了流道中的紊流度,從而使換熱系數(shù)進(jìn)一步增大。方形百葉窗和弧形百葉窗均是在翅片上開翻邊槽,以此強(qiáng)化氣流擾動(dòng),增強(qiáng)換熱?;⌒伟偃~窗型翅片的開槽是沿著銅管外壁進(jìn)行的,這樣的好處是氣流可以在百葉窗型翻邊的誘導(dǎo)下更大面積的沖刷到管后部,即減小銅管后部的尾流區(qū)域,強(qiáng)化換熱。當(dāng)迎面風(fēng)速為2.5m/s時(shí),它們與平板翅片換熱器的換熱因子的倍數(shù)見表2。

  百葉窗型的翅片可極大地改善熱交換性能,特別是弧形百葉窗翅片可獲得非常高的換熱系數(shù),幾乎是波紋片的兩倍。但引起的阻力損失也較大;影響大小與條縫高度有關(guān)。比如X1(開縫寬度為1mm)型翅片換熱器,其換熱特性與其他高度的相比并無明顯提高,但阻力特性增長卻比較明顯,因此,百葉窗條縫高度應(yīng)嚴(yán)格控制。

  另外,從圖2及圖3中還可看出,弧形百葉窗翅片的換熱性能較矩形百葉窗翅片的增加較大,但壓降損失與相同開縫寬度的矩形百葉窗式相比只是稍大一些。

  表2 各種翅片在迎面風(fēng)速Vy=2.5m/s時(shí)的性能參數(shù)對(duì)比

  N

  C

  L1

  L2

  W

  X1

  X2

  X3

  j/j平板

  1.14

  1.27

  1.54

  1.80

  1.83

  2.36

  2.14

  2.28

  f/f平板

  1.18

  1.24

  1.45

  1.90

  2.29

  2.70

  2.13

  2.11

  2.2 影響換熱器性能的幾何因素

  2.2.1 翅片間距

  關(guān)于翅片間距對(duì)換熱性能的影響,Rich研究了管徑為13.34mm,管間距為27.5mm,

  排間距為31.75mm情況下的14種平板翅片盤管的情況。試驗(yàn)結(jié)果得到:4排管時(shí),換熱性能與翅片間距無關(guān);每排管的壓力降也與管排數(shù)無關(guān)。然而對(duì)1排或2排管,規(guī)律有所不同。ReDc>5000時(shí),渦流的影響占據(jù)了重要位置,翅片間距的影響可忽略。當(dāng)ReDc<5000時(shí),熱交換性能隨翅片間距的減小而增大。Wang等人的試驗(yàn)也證實(shí)了此觀點(diǎn),同時(shí)還證實(shí)了對(duì)多排百葉翅片和波紋翅片換熱器具有相同規(guī)律。研究發(fā)現(xiàn):較高的空氣流速和較大的管排數(shù)都會(huì)導(dǎo)致渦流區(qū)域的產(chǎn)生,因此,翅片間距對(duì)換熱系數(shù)的影響均可忽略。

  2.2.2 管排數(shù)

  對(duì)于平板型翅片:在管排數(shù)較大、翅片間距較小,且雷諾數(shù)較低時(shí),管排數(shù)對(duì)換熱特性的影響才顯著起來。當(dāng)ReDc3000時(shí),管排數(shù)對(duì)換熱的影響將減小。

  對(duì)于波紋形翅片:低雷諾數(shù)下,管排數(shù)對(duì)換熱系數(shù)和摩擦系數(shù)沒有明顯的影響;而在高雷諾數(shù)下,換熱系數(shù)會(huì)隨著管排數(shù)的增加而增加。

  對(duì)于開縫型翅片:低雷諾數(shù)下,管排數(shù)對(duì)換熱系數(shù)有顯著的影響,換熱因子會(huì)隨著管排數(shù)的增加而急劇降低;管排數(shù)對(duì)摩擦因子的影響相對(duì)較小。

  2.2.3 管徑

  對(duì)于平板型翅片,管徑越大的,造成管后的無效面積也越大。換熱系數(shù)隨著換熱管管徑的減小而稍有增大。比如,對(duì)于單排管和雙排管,Dc=8.51mm時(shí)的換熱系數(shù)比Dc=10.23mm的稍高;但Dc=10.23mm的壓降卻比Dc=8.51mm的要大10%—15%。

  對(duì)于其它的翅片類型(波紋形翅片、條縫形翅片、百葉窗翅片),采用小管徑,同樣可以減小管排的拖曳作用,從而增大管外換熱系數(shù);并能夠減小壓降損失。如:對(duì)百葉窗翅片,當(dāng)迎面風(fēng)速Vfr<1.5m/s時(shí),采用小管徑的多排管結(jié)構(gòu)有利于提高換熱器的換熱性能,并能夠減小10%的壓降損失。

  3.濕工況下翅片換熱器的性能變化

  對(duì)濕工況下空氣側(cè)傳熱系數(shù)的報(bào)道一直存在爭議。例如,McQuiston(1978a)指出濕工況下空氣側(cè)換熱系數(shù)較干工況下略低,而Eckels和Rabas(1987)卻得到相反的結(jié)論。

  K.Hong和R.L.Webb[6]指出,在2.5m/s的迎面風(fēng)速下, 濕工況和干工況下的壓降比,百葉翅片的為2.4,而波紋翅片的僅為1.42。另據(jù)報(bào)道,根據(jù)翅片形式和濕負(fù)荷的不同,濕工況下的壓降為干工況下的1.5~2.0倍。然而,對(duì)不同的翅片形式,濕工況下的熱交換系數(shù)比干工況下低10~30%。總之,盤管表面的凝結(jié)液膜的產(chǎn)生將嚴(yán)重影響空氣的換熱特性和摩擦特性。

  2000年,Wang以兩種百葉窗形翅片在濕工況下的換熱性能為研究對(duì)象進(jìn)行了分析。實(shí)驗(yàn)結(jié)果表明:在濕工況的條件下,換熱特性對(duì)翅片間距和管排數(shù)的變化不太敏感,結(jié)果與干工況下的特性十分接近。然而與換熱特性不同的是,翅片間距的變化對(duì)摩擦特性有顯著的影響,對(duì)于翅距=1.2mm的換熱器比翅距=2.5mm的換熱器摩擦因子大30%~50%;另外,管排間距越大,越有利于凝結(jié)水的排放,從而使換熱器的壓降損失降低。

  4.換熱器翅片表面性能的改進(jìn)

  鋁翅片換熱器在使用中存在如下問題:首先,鋁翅片工作在干濕交替的環(huán)境中,其表面會(huì)形成Al2O3·H2O氧化層粉末,帶來機(jī)器壽命減少和環(huán)境污染兩方面的問題;此外,濕工況作業(yè)時(shí),空氣中的水分冷凝,附著在翅片上形成“水橋”,導(dǎo)致風(fēng)阻增加,能耗加大。表面涂膜處理是解決問題的有效方法,空調(diào)熱交換器表面涂膜處理技術(shù)是九十年代發(fā)展起來的新技術(shù),主要進(jìn)行耐蝕性涂膜處理和親水性涂膜處理。

  進(jìn)行翅片表面涂膜處理后,空氣側(cè)的阻力特性會(huì)得到極大改觀。Mimaki(1987)對(duì)帶親水涂層的換熱器進(jìn)行了研究,他發(fā)現(xiàn),采用親水涂層翅片后,濕工況下的壓降降低到原來的40~50%;且空氣側(cè)的熱傳遞系數(shù)增加了2~3個(gè)百分點(diǎn)。K.Hong和R.L.Webb[6]發(fā)現(xiàn),對(duì)波紋片、開縫片和百葉片三種翅片形式,在2.5m/s迎面風(fēng)速時(shí),帶親水涂覆層時(shí)的濕工況和干工況下的壓降比均為1.2。即對(duì)濕盤管,在百葉翅片和波紋翅片上采用親水涂覆層,當(dāng)迎面風(fēng)速為2.5m/s時(shí),可使?jié)窆r下壓降損失分別降低45%和15%。因此,涂覆層對(duì)百葉翅片的影響要比對(duì)波紋翅片的影響大。

  5.結(jié)論

  熱交換系數(shù)大的翅片能夠在相同容積和造價(jià)下提高熱交換器的熱交換能力,但是阻力的增加在固定的風(fēng)機(jī)運(yùn)行曲線下會(huì)降低空氣的流量。空氣流量的降低有兩方面的的不利因素:**降低的空氣流速會(huì)降低熱交換系數(shù);第二在表冷器中空氣溫度的提高,使相同起始溫差下的LMTD降低。因此,設(shè)計(jì)人員應(yīng)充分了解所選換熱器的翅片形式,并根據(jù)使用場合不同區(qū)別對(duì)待。

 ?。?)在干工況下,盡量采用換熱系數(shù)大的翅片形式,如開縫翅片,其中弧形百葉窗翅片形式換熱特性更為突出;但由于開縫翅片的阻力較大,因此,在需要相同換熱量時(shí),盡量選用迎風(fēng)面積較大的,而不是排數(shù)較大的,以充分利用增強(qiáng)型翅片的優(yōu)點(diǎn),而不增加它的風(fēng)機(jī)功率;

 ?。?)在濕工況下,開縫翅片的阻力增加較多,系統(tǒng)風(fēng)量會(huì)減少,此時(shí),可考慮采用波紋形翅片換熱器,且翅片間距不宜太??;

  (3)當(dāng)翅片換熱器需要在干、濕工況下交替運(yùn)行時(shí),可在翅片表面添加親水性鍍膜,它對(duì)換熱性能影響極小,但可極大地降低濕工況下空氣流動(dòng)阻力,對(duì)百葉翅片的效果更佳。在此情況下,可盡量采用百葉型翅片。

 ?。?)盡量選用小管徑的翅片換熱器,其換熱特性和阻力特性較大管徑的均有所改善。

 ?。?)新風(fēng)機(jī)組和風(fēng)機(jī)盤管換熱器采用不同的翅片形式,如可用新風(fēng)負(fù)擔(dān)室內(nèi)全部濕負(fù)荷,換熱器采用波紋片的;而風(fēng)機(jī)盤管采用開縫翅片,完全在干工況下工作。

  參考資料:

  1.Giovanni Lozza,Umberto Merlo. An experimental investigation of heat transfer and friction losses of interrupted and wavy fins for fin-and-tube heat exchangers, International Journal of Refrigeration 24(2001):409-416

  2.Wei-Mon Yan, etc. Performance of finned tube heat exchangers operating under frosting conditions, International Journal of Heat and Mass Transfer 46(2003):871-877

  3.Chi-Chun Wang, Kuan-Yu Chi. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers, partⅠ:new experimental data, International Journal of Heat and Mass Transfer 43(2000):2681-2691

  4.駱仲泱等,翅片形式對(duì)強(qiáng)化換熱影響的研究及其效應(yīng)評(píng)價(jià),熱能動(dòng)力工程,1996.9,P257~261

  5.黃紅斌等,不同沖縫片冷凝器換熱理論和實(shí)驗(yàn)研究,家電科技,2003.1:P77~79

  6.K.Hong, R.L.Webb, Performance of Dehumidifying Heat Exchangers With and WithoutWetting Coatings, Transactions of the ASME, 1999.11(Vol.121):1018~1026

  作者簡介:

  樊越勝,男,1965年5月,副教授

  通風(fēng)設(shè)備網(wǎng):

乃东县| 许昌县| 青海省| 仙居县| 广水市| 清远市| 桂平市| 乡宁县| 阜康市| 资阳市| 抚远县| 清原| 会理县| 陆丰市| 二连浩特市| 分宜县| 江北区| 鲁山县| 中方县| 山阳县| 湾仔区| 齐齐哈尔市| 平南县| 新邵县| 望江县| 广德县| 安图县| 都匀市| 鸡泽县| 江门市| 江永县| 道孚县| 紫金县| 广河县| 勐海县| 徐州市| 新竹市| 珠海市| 甘孜县| 巴林右旗| 吉林省|